Grupo de Estudos em Aprendizagem de Máquina
  • Seminário 23/08/2017

    Publicado em 11/08/2017 às 20:01

    O nosso seminário GEAM vai recomeçar na quarta 23 do Agosto, às 10
    horas, na sala 007 do Departamento de Matemática.

    Palestrante: Vladimir Pestov (UFSC / uOttawa)

    Título: A prova do lema de Johnson-Lindenstrauss sobre projeções aleatórias

    Resumo: Como já explicado pelo Douglas no nosso seminário, o lema de
    Johnson-Lindenstrauss, originalmente mostrado no contexto da análise
    funcional, tornou-se numa ferramenta importante da redução de
    dimensionalidade em várias partes da informática. Numa série de 3
    palestras, quero apresentar uma prova completa do lema, começando com
    alguns resultados matemáticos importantes por sua própria conta: uma
    construção da medida de Haar sobre a esfera euclideana, a concentração
    de medida sobre as esferas, etc.


  • Seminário 29/11/2016

    Publicado em 28/11/2016 às 12:12

    Nosso próximo seminário será do Prof. Douglas Soares Gonçalves, às 15h na sala 007 do Departamento de Matemática (Auditório do LAED).

    Título: Redução de Dimensionalidade: uma breve introdução

    Resumo: Discutiremos sobre o problema de representar um conjunto de pontos,
    originalmente em um espaço Euclidiano de dimensão alta,
    em um subespaço de dimensão menor de modo a preservar alguma característica
    do conjunto original (por exemplo, a distância entre pares de pontos ou a variância).

    Para tanto, apresentaremos os conceitos básicos de algumas técnicas
    de redução de dimensionalidade como PCA, MDS, Isomap e Laplacian eigenmaps.
    Projeções aleatórias e o lema de Johnson-Lindenstrauss também serão apresentados brevemente.
    Cada uma das técnicas será acompanhada de exemplos simples e (espero que) ilustrativos.

    Clique aqui para baixar os slides: dimred


  • Assuntos a serem discutidos

    Publicado em 22/11/2016 às 14:00

    Seminários já realizados:

    • Modelo probabilístico padrão da aprendizagem estatística, parte 1 (Prof. Vladímir Pestov, 11/10)
    • Modelo probabilístico padrão da aprendizagem estatística, parte 2 (Prof. Vladímir Pestov, 18/10)
    • Florestas Aleatórias (Prof. Aldrovando Araújo, 01/11)
    • Aplicação e mais Teoria sobre o método de Florestas Aleatórias (Prof. Vladímir Pestov e Prof. Melissa Mendonça, 10/11)
    • Machine Learning na perspectiva da indústria (Túlio Baars, 22/11)

    Seminários futuros com datas aproximadas:

    • Redução de dimensionalidade (Prof. Douglas Gonçalves, 29/11)
    • Classificador k-NN (Prof. Maria Inez Cardoso Gonçalves)
    • Linguagens de programação que tem uma biblioteca de aprendizagem de máquina (Prof. Melissa Mendonça)
    • TensorFlow de Google (Pessoal da indústria)
    • Redes Neurais Artificiais (Marco Antonio)
    • Information Bottleneck method (Márlon)
    • Support Vector Machines (Prof. Melissa Mendonça)
    • Clustering
    • Dimensão de Vapnik-Chervonenkis
    • Competições sobre Kaggle ….

    Todas as reuniões du grupo tem lugar na sala LAED (007) do Departamento de Matemática, as terças, às 15 horas.

    Referências bibliográficas iniciais:

    • V. Pestov, Foundations of statistical machine learning and neural networks. The Vapnik-Chervonenkis theory, University of Ottawa lecture notes, 2012, disponíveis aquí.
    • Shahar Mendelson, A few notes on statistical learning theory, In: Advanced Lectures in Machine Learning, (S. Mendelson, A.J. Smola Eds), LNCS 2600, pp. 1-40, Springer 2003, disponível aquí em postscript.
    • Luc Devroye, László Györfi and Gábor Lugosi, A Probabilistic Theory of Pattern Recognition, Springer-Verlag, New York, 1996. ISBN 0-387-94618-7.
    • Vladimir N. Vapnik, Statistical learning theory, John Wiley & Sons, Inc., New York, 1998. xxvi+736 pp. ISBN: 0-471-03003-1
    • Martin Anthony and Peter Bartlett, Neural network learning: theoretical foundations, Cambridge University Press, Cambridge, 1999. xiv+389 pp. ISBN: 0-521-57353-X
    • M. Vidyasagar, Learning and Generalization, with Applications to Neural Networks, 2nd Ed., Springer-Verlag, 2003.
    • Avrim Blum, John Hopcroft, Ravindran Kannan, Foundations of Data Science, version of May 14, 2015, disponível livremente aquí.
    • F. Cérou and A. Guyader, Nearest neighbor classification in infinite dimension, ESAIM Probab. Stat. 10 (2006), 340-355, disponível aquí.
    • Gérard Biau, Luc Devroye, and Gábor Lugosi, Consistency of random forests and other averaging classifiers, Journal of Machine Learning Research 9 (2008), 2015-2033, disponível aquí.

  • Seminário 18/10/2016

    Publicado em 18/10/2016 às 11:59

    Título: Modelo probabilístico da Aprendizagem Automática Estatística – Parte 2
    Ministrante: Prof. Vladimir Pestov (Prof. Visitante – University of Ottawa)

    Clique aqui para obter os slides.


  • Seminário 11/10/2016

    Publicado em 11/10/2016 às 1:24

    Título: Modelo probabilístico da Aprendizagem Automática Estatística
    Ministrante: Prof. Vladimir Pestov (Prof. Visitante – University of Ottawa)

    Clique aqui para obter os slides.


  • Bem Vindo!

    Publicado em 05/10/2016 às 19:24

    Nesta página, estarão armazenados todos os materiais e informações sobre o Grupo de Estudos em Aprendizagem de Máquina (GEAM) do Departamento de Matemática da UFSC.

    Para participar da lista de discussões, acesse http://mailman.ufsc.br/mailman/listinfo/geam

    Contatos:

    Prof. Vladimir Pestov
    Prof. Aldrovando Araújo